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Entropy spectrum for distribution of history probabilities in growth models
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Based on the multifractal formalism, we introduce a multifractal spectrum associated with entropy of clus-
ters in growth models by calculating probability distributions of histories from an initial seed to a resultant
cluster. The entropy spectrum is shown in a ballistic growth model producing fanlike clusters and Eden growth
as examples. Numerical calculations of the models give results that suggest the existence of phase transitions
in the spectrum.@S1063-651X~97!09506-8#

PACS number~s!: 61.43.Hv, 64.60.Cn
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Considerable theoretical and experimental efforts h
been undertaken to investigate scaling properties of fra
clusters and rough surfaces of compact clusters in the
few years@1#. Although our understanding of geometric
features of clusters is advanced by these efforts, mos
them study only resultant patterns as snapshots at a mo
rather than growth itself. For instance, thef (a) spectrum@2#
of diffusion-limited aggregation~DLA ! @3# gives us some
information about the distribution of active or unscreen
sites at the surface, but one could hardly predict how
pattern evolves. In such an analysis, one assumes that
terns should be self-similar in every time step and the fra
clusters are most probable. However, in what sense could
confirm that our observing patterns are so generic and m
probable? To understand that, one has to take into accou
huge number of possible ways of growth and those proba
ties. Recently, Elezgarayet al. have introduced the ‘‘history
probability,’’ that is, the probability of finding a history from
a seed particle to a resultant cluster, and studied morpho
selection mechanism of Laplacian growth@4#. If the distribu-
tion of history probabilities is given in some invariant for
independent of the number of particles, one can know h
often a cluster to be examined is observed in all poss
patterns. To our knowledge, there is no formulation to ch
acterize such statistics of clusters, except for a few studie
entropy@4–6#. Our primary purpose in this Brief Report is t
give a general formalism of the distribution of history pro
abilities for stochastic growth models in a similar way to t
analysis of chaotic orbits in dynamical systems, i.e., the m
tifractal spectrum of entropy@7,8#. In addition, we would
like to show a few examples for the formulation in we
known models.

Let us consider a growth model starting with a single se
particle on a lattice. Letsm be a cluster consisting ofm
particles andp($sm%) be the probability of finding a history
set$sm%. Assuming that the conditional probability thatsm
becomessm11 is proportional to its massm at the some
powerg, the history probability takes the form

p~$s1 ,s2 ,...,sm11%!;C2m~m! !2g, ~1!

wherem! denotes the factorial ofm and C is a constant
551063-651X/97/55~6!/7793~4!/$10.00
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depending on the details of the growth rules and lattice str
ture. We have checked numerically the validity of this a
sumption for Eden clusters@9# and DLA clusters on a two-
dimensional square lattice. The dependence of hist
probabilities onm obtained numerically is shown in Fig. 1
In these plots, only one typical growth process was samp
and we did not make any averaging. However, the scalin

FIG. 1. Dependence of lnp onm for ~a! an Eden cluster and~b!
a DLA cluster. The numerical data denoted by the solid circle ar
an excellent agreement with the solid line based on Eq.~1!.
7793 © 1997 The American Physical Society
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7794 55BRIEF REPORTS
Eq. ~1! seems to hold very nicely. The fitting parameters
C56.70 andg50.509 for an Eden cluster andC53.54 and
g50.608 for a DLA cluster using a least-squares method

When the history probability is proportional to (m!)2g,
the numberNg of histories that have the same indexg will
be also scaled as (m!) h(g). We write a partition function as

Zm~q!5 (
$sn%

p~$s1 ,...,sm%!q, ~2!

where the sum is taken over all possible histories froms1 to
sm . The entropy of theqth orderKq is defined by

Kq5 lim
m→`

2
1

q21

lnZm11~q!

ln m!
. ~3!

One can easily obtainh andg via the Legendre transform

g~q!5
d

dq
tq , h~q!5qg~q!2tq , ~4!

with tq5(q21)Kq . The most natural definition of entrop
may be given from an ensemble average of lnp(sm) taken
over equal-size clusters, wherep(sm) is the probability of
finding sm @5#. However, it is difficult to estimatep(sm)
accurately because there is a huge number of paths from
initial seed to sm . By contrast, the history probability
p($s1 ,...,sm%) can be estimated accurately even for lar
m when the transition probability to the next cluster is give

Let pg be the history probability scaled as (m!)
2g. Then

the probability of finding the indexg is given byNgpg ,
which is scaled as (m!)2n with n5g2h(g). The exponent
n is not negative because the probability cannot exc
unity. All history probabilities exceptn50 will decay,
which implies that only the history withg5g(1) will be
observed in the limitm→`.

We apply the method to a few examples. We first co
sider a ballistic aggregate growth model on a tw
dimensional square lattice. A seed particle is put into
origin of the lattice and the rest of the particles move para
to the y axis with randomx coordinates until they eithe
escape from or stick to the cluster@10#. The particles canno
stick on they50 line except at the origin. This process lea
to a fanlike structure. LetLm be the horizontal size of a
clustersm . Then the particles stick to the cluster at one
Lm12 sites of the surface. The history probability froms1
to sm is determined from a set of horizontal siz
$L1 ,L2 ,...,Lm%. Considering histories whose resultant clu
ter has the horizontal sizeL and massm, the history prob-
ability p and the number of historiesN are of the forms

p~$L1 ,...,Lm%!532n142n2•••~L12!2nL, ~5!

N~$L1 ,...,Lm%!

51n1213232n22132•••~L21!nL2121323LnL, ~6!

wherenk is the number of particles that stick to the clus
with horizontal sizek. Here the conditionsn11n21•••
1nL5m21, 1<n1 ,...,nL21 , and 0<nL hold in Eqs.~5!
and ~6!. We consider the history satisfying the relationLm
e
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;mg for 0,g<1. This relation leads tonk;k(12g)/g in Eqs.
~5! and ~6!. Replacing the sum ofk by an integral for
lnN($Li%)p($Li%), one has

ln N~$Li%!p~$Li%!q;g~12q!m lnm@11O~mg21!#, ~7!

whereO(mg21) denotes the terms vanishing asm goes to
infinity. For g50, the horizontal size remains a finite valu
L and the cluster is shaped like a rod. Then the contribut
of the history to the partition function is of the order o
L2q(m2L). Using Starling’s formula, the partition functio
Zm11(q) can be written as

Zm11~q!;(
L

L2q~m2L !1 (
0,g<1

~m! !~12q!g, ~8!

where the first sum is taken over the histories whose h
zontal size is finite in the large-m limit. The first sum is of
the order ofL2qm and the second sum vanishes forq.1 in
the limit m→`. One can therefore see tha
ln Zm11(q)/ln(m!) vanishes in the limit, which leads toh(q)
5g(q)50 for q.1. In the case ofq,1, the contribution of
the first sum toZm11(q) is negligible. Then one can rewrit
Eq. ~8! for q,1 as

Zm11~q!;~m! !12qS 11 (
0,g,1

~m! !~12q!~g21!D . ~9!

Equation~9! shows thath(q)5g(q)51 since the sum ofg
vanishes asm goes to infinity.

For q51, h andg cannot be derived from Eqs.~8! and
~9!. However, the asymptotic behavior ofLm can be obtained
from simple consideration. LetdL be an increment ofLm
betweenm andm1dm. The averaged value ofdL is esti-
mated asdL;2dm/(Lm12) because the probability of in
creasingLm is given by 2/(Lm12). Approximating the rela-
tion by a differential equation, one has

dLm
dm

5
2

Lm12
. ~10!

The solution of this equation leads to the asymptotic beh
ior Lm;m1/2, which impliesg(1)5 1

2.
From the above calculations, one can see that the s

trum consists of three phases as shown in Fig. 2, tha
(h,g)5(0,0) for q.1, (12,

1
2) for q51, and~1,1! for q,1.

We also calculated the spectrum numerically as follows.
first generate a sequence of horizontal size$Ln% randomly. If
Ln5L, thenLn11 is set equal toL11 with the probability
p*5an12g andL with the probability 12p* , wherea and
g are chosen randomly between 0 and 1. We next calcu
the history probabilitypg and the numberNg of such histo-
ries and addNgpg

q to the partition function. This procedure i
repeated 105 times. In order to satisfy the equalityZm(1)
51, Zm(q) is divided by the sum ofNgpg . The numerical
results suggest thath(g) converges to the lineh5g as
shown in Fig. 2, which is in agreement with Eq.~7!. It
should be noted thatg parametrizes all possible clusters a
tells us the ways of growth of the clusters.

Another nontrivial example is the Eden model. The tra
sition probability from an Eden clustersm to sm11 is deter-
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mined from its perimeter sizeLm because the cluster grow
in the way that a new particle is added to one of the adjac
empty sites with the probability 1/Lm . We have calculated
the entropy spectrum of Eden clusters on a two-dimensio
square lattice numerically as shown in Fig. 3. The distrib
tion of history probabilities is computed by summing over
the histories up tom515. To remove influence of the facto
C in Eq. ~1!, Kq is determined from the ratio of partitio
functions Zm11(q)Zm21(q)/Zm(q)

2;@m/(m21)#2t(q).
For higher values ofm, we are faced with computationa
limitations due to the increasing number of histories. So
adopt an alternative definition ofZm(q). Replacing the sum

FIG. 2. Entropy spectrum of the ballistic aggregate mo
whose trajectories of particles are parallel to the vertical axis.
solid circles are obtained from the theoretical estimation of the p
tition function and the three lines are obtained numerically. T
dotted line is form5950, the dashed line is form59500, and the
solid line is form590 000.

FIG. 3. Effect of massm on the entropy spectrum in Ede
growth. The dash-dotted line is form57, the dashed line is form
510, and the solid line is form515. The spectrum for onlyq
,0.9 is plotted. It is difficult to estimate the spectrum accurately
q.1 from small clusters because a phase transition occursq
51. The inset shows the dependence ofg~1! onm21/4. The dashed
line is drawn as a guide for the eye.
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of histories in Eq.~2! by an ensemble average@7#, one can
write the partition function as

Zm~q!5^^p~$sn%!q21&&, ~11!

where a pair of double angular brackets refers to the
semble average taken over possible histories froms1 to
sm . As m increases, the history probability whose scali
index is given byg;g(1) still remains large since it has
small escape rate. Equation~11! is useful for obtaining the
spectrum nearq51.

The minimum scaling indexg~`! is expected to be12 be-
cause of the requirement thatsm has the smallest perimete
size leads to a circular object. If the cluster is compact a
has the indexg, thenLm is scaled asR2g with a linear size
R of the cluster. The surface of the cluster is self-simil
exceptg5 1

2, and has the fractal dimension 2g. On the other
hand, if the cluster is self-similar like a DLA cluster, most
sites of the cluster belong to its perimeter andLm is scaled as
Lm;m. Thusg is directly related to the morphology of Ede
clusters and distributed between12 and 1. In the case thatg~1!
is equal to some value between12 and 1, the cluster must hav
a complicated surface such as a fractal curve.

We have found thatg~1! is about 0.66 form512 and
checked the dependence ofg~1! onm. In the inset of Fig. 3,
g~1! calculated from the ensemble average of 104 clusters is
plotted versusm21/4. It is known that the interface widthw
in Eden growth starting from an initially flat surface with
linear sizeR is scaled withm and heightl as w(R,l )5
Ra f ( l /Rz), where the exponentsa5 1

2 andz5 3
2correspond to

the stationary and dynamic scaling@11#. The scaling function
f (x) is such thatf (x);xb for x!1 and f (x);const forx
@1 with b5a/z. One can also take the alternative for
w(R,l )5 l b f (Rz/ l ), which is useful for Eden clusters star
ing from a single seed. Assuming thatl;R;m1/2 for Eden
clusters starting from a single seed, the scaling form is
written byw(m)5m1/6f (m1/4). The asymptotic behavior o
physical quantities form→` can be represented well b
using a function ofm1/4. The inset of Fig. 3 shows thatg~1!
converges to12 asm goes to infinity, which is consistent with
the fact that Eden growth leads to compact and spher
clusters. The equalityK15K` implies thatKq is constant for
q>1 becauseKq must decrease monotonical asq increases.
Our numerical calculations suggest that the generalized
tropy varies continuously forq,1. We therefore expect tha
a phase transition occurs at the critical pointq51.

We next consider DLA clusters on a two-dimension
square lattice. DLA growth is intrinsically different from th
above two examples with respect to growth rules. The tr
sition probability from a DLA clustersm to sm11 is equal to
the growth probability at the interface proportional to t
gradient of Laplacian field, while it is determined from th
perimeter size or linear size in ballistic aggregates. Never
less, the assumption of Eq.~1! is still effective for Laplacian
growth as already shown in Fig. 1~b!. LetRm be a linear size
of sm andDm be the fractal dimension ofsm . Using the
dimension spectrumf (a), the transition probability from
sm to sm11 can be estimated byRm

2am, wheream is the
singularity of growth probability at the interface ofsm .
Then the history probability takes the form

l
e
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e
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p~$s1 ,s2 ,...,sm%!; )
n51

m21

n2an /Dn. ~12!

Considering a history of a growing cluster whose fractal
mension is independent of mass, the probability is scaled
m!. The factorial ofm again appears and the scaling a
sumption of Eq.~1! is now justified.

We point out a relation connecting the entropyK1 to the
fractal dimensionD. The fractal dimension of typical DLA
clusters is independent ofm and the statistically average
singularity of the growth probability can be given bya~1!,
wherea~1! is the singularity forq51 in the dimension spec
trum. We therefore conjecture the relation

K15a~1!/D. ~13!

We checked this relation numerically for the same data
Fig. 1~b!. The fractal dimension calculated from the radius
gyration is 1.6960.02 and the information dimension for th
harmonic measure of two-dimensional DLA clusters is un
@12#. Substituting these values into Eq.~13!, the entropy
K150.608 is well approximated by 1/D.

In summary, we have introduced an invariant that is o
tained from the history probabilities in growth models. He
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‘‘invariant’’ means that it does not depend on the latti
structure and extrinsic details of growth rules. The entro
obtained from history probabilities and the multifractal spe
trum h(g) are directly related to statistics of growing clu
ters and the escape rateg2h(g) tells us how often the clus
ter will be observed in growth models. The histo
probability has the advantage of numerical estimation
comparison to the probability of finding a cluster amo
equal-size clusters. To demonstrate the application of
method to growth models, we have calculated the entr
spectrum of the ballistic aggregate growth producing fanl
clusters as a solvable example. An analytical estimation
the spectrum and numerical results show the existence
phase transition atq51. We have also applied the method
Eden clusters starting from a single seed. Numerical ca
lations ofh(g) suggest that a phase transition occurs at
critical pointq51. The indexg in Eden growth is related to
the fractal dimension of the surface and the spectrum sh
that the cluster with a fractal surface will not be observed
largem. To study the statistics of clusters generated in s
chastic growth models, it is not sufficient that one consid
only geometrical quantities such as the fractal dimensi
We believe that the entropy spectrum is useful to study
tistical physics of growth models.
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