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Entropy spectrum for distribution of history probabilities in growth models
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Based on the multifractal formalism, we introduce a multifractal spectrum associated with entropy of clus-
ters in growth models by calculating probability distributions of histories from an initial seed to a resultant
cluster. The entropy spectrum is shown in a ballistic growth model producing fanlike clusters and Eden growth
as examples. Numerical calculations of the models give results that suggest the existence of phase transitions
in the spectrum[S1063-651X97)09506-9

PACS numbd(s): 61.43.Hv, 64.60.Cn

Considerable theoretical and experimental efforts havelepending on the details of the growth rules and lattice struc-
been undertaken to investigate scaling properties of fractalre. We have checked numerically the validity of this as-
clusters and rough surfaces of compact clusters in the pastimption for Eden clusteff®] and DLA clusters on a two-
few years[1]. Although our understanding of geometrical dimensional square lattice. The dependence of history
features of clusters is advanced by these efforts, most gfrobabilities onm obtained numerically is shown in Fig. 1.
them study only resultant patterns as snapshots at a momelnt these plots, only one typical growth process was sampled
rather than growth itself. For instance, they) spectrun{2]  and we did not make any averaging. However, the scaling in
of diffusion-limited aggregatioDLA) [3] gives us some
information about the distribution of active or unscreened
sites at the surface, but one could hardly predict how the (a)
pattern evolves. In such an analysis, one assumes that pat-
terns should be self-similar in every time step and the fractal
clusters are most probable. However, in what sense could we ‘%
confirm that our observing patterns are so generic and most =

[o R
c

probable? To understand that, one has to take into account a
huge number of possible ways of growth and those probabili-
ties. Recently, Elezgarast al. have introduced the “history
probability,” that is, the probability of finding a history from

a seed patrticle to a resultant cluster, and studied morphology
selection mechanism of Laplacian grovit4. If the distribu- ! L L
tion of history probabilities is given in some invariant form 0 2 4 6
independent of the number of particles, one can know how m/10*
often a cluster to be examined is observed in all possible

patterns. To our knowledge, there is no formulation to char-

acterize such statistics of clusters, except for a few studies on 0
entropy[4—6]. Our primary purpose in this Brief Report is to (b)
give a general formalism of the distribution of history prob-
abilities for stochastic growth models in a similar way to the
analysis of chaotic orbits in dynamical systems, i.e., the mul-
tifractal spectrum of entropy7,8]. In addition, we would
like to show a few examples for the formulation in well-
known models.

Let us consider a growth model starting with a single seed -2
particle on a lattice. Letr,, be a cluster consisting ah
particles ando({o}) be the probability of finding a history
set{o,}. Assuming that the conditional probability that, . , ] '
becomeso,,; is proportional to its massn at the some '30 1 9 3 4 5
power vy, the history probability takes the form mi103

o
)

P({01,02,....,0m11})~C~"(m!) ™7, ) FIG. 1. Dependence of non m for (a) an Eden cluster angb)
a DLA cluster. The numerical data denoted by the solid circle are in
wherem! denotes the factorial o and C is a constant an excellent agreement with the solid line based on(Ex.
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Eq. (1) seems to hold very nicely. The fitting parameters are~m? for 0< y=<1. This relation leads to,~k*~?/7 in Egs.
C=6.70 andy=0.509 for an Eden cluster ar@=3.54 and (5) and (6). Replacing the sum ok by an integral for
y=0.608 for a DLA cluster using a least-squares method. InN({L;})p({L;}), one has

When the history probability is proportional tan{) 7,
the numbe., of histories that have the same indgxwill I N({LiHp({LiD%~y(1=g)m Inm[1+O(m*"H],  (7)

be also scaled as() (). We write a partition function as . o
whereO(m”~ ") denotes the terms vanishing asgoes to

infinity. For v=0, the horizontal size remains a finite value
Zm(Q):{E} pP{or,....omb), (2) L and the cluster is shaped like a rod. Then the contribution
In of the history to the partition function is of the order of

where the sum is taken over all possible histories fiepto L~ %™ ™). Using Starling’s formula, the partition function

om. The entropy of theyth orderK, is defined by Z,+1(g) can be written as
Ko lim — — Zm:2(0) 3) Zner(@)~2 LA™ L4 X (m)E9y, (9
q - q— 1 In m! : L o<y=<1

where the first sum is taken over the histories whose hori-

One can easily obtaih and vy via the L ndre transform R o . .
y Y cege ° zontal size is finite in the large limit. The first sum is of

d the order ofL "9™ and the second sum vanishes ép¢ 1 in
y(q)= daq @ h(q)=qgy(q)— g, (4 the limit m—. One can therefore see that
In Z,,,+1(g)/In(m!) vanishes in the limit, which leads to(q)

=vy(q)=0 for g>1. In the case ofj<1, the contribution of
the first sum taZ,,,, 1(q) is negligible. Then one can rewrite
Eq. (8) for q<1 as

with 74=(q—1)K,. The most natural definition of entropy
may be given from an ensemble average gi(¢n,) taken
over equal-size clusters, whepéo,,) is the probability of
finding o, [5]. However, it is difficult to estimate(o,,)
accurately because there is a huge number of paths froman z_ . (q)~(m!)1 9 1+ E (mhHA-alr=1)  (g)
initial seed to o,,. By contrast, the history probability 0<y<1
p({o1,...,0n}) can be estimated accurately even for large
m when the transition probability to the next cluster is given.
Let p, be the history probability scaled as{) ~”. Then
the probability of finding the indexy is given by N p,,
which is scaled asni!) ~” with v=y—h(y). The exponent
v is not negative because the probability cannot excee
unity. All history probabilities exceptv=0 will decay,

Equation(9) shows thah(qg)=y(q)=1 since the sum o¥
vanishes asn goes to infinity.

For g=1, h and y cannot be derived from Eg$8) and
(9). However, the asymptotic behavior lof, can be obtained
Eom simple consideration. LefL. be an increment of

etweenm and m+ ém. The averaged value aiL is esti-
which implies that only the history withy= (1) will be ~ Mated assl.~2om/(Ly+2) because the probability of in-
creasingL, is given by 2/(,+2). Approximating the rela-

observed in the limim— oo, : i : !
We apply the method to a few examples. We first con-ion by a differential equation, one has

sider a ballistic aggregate growth model on a two- dL >
dimensional square lattice. A seed particle is put into the —m_ )
origin of the lattice and the rest of the particles move parallel dm  Lp+2
to they axis with randomx coordinates until they either ) ) _ )
escape from or stick to the clust0]. The particles cannot 1 N€ SOIU“BQ of this equation Iead? to the asymptotic behav-
stick on they=0 line except at the origin. This process leads!®f Lm™~M"*, which implies y(1)=.

to a fanlike structure. Let,, be the horizontal size of a _ 'om the above calculations, one can see that the spec-
clustera,,. Then the particles stick to the cluster at one offUM Consists of three phases as shown in Fig. 2, that is,
L,+2 sites of the surface. The history probability fram (h,%)=(0,0) forg>1, (3,5) for q=1, an_d(l,l) for g<1.

to o, is determined from a set of horizontal sizes We also calculated the spectrum numerically as follows. We

{L{,L,,...,Ly}. Considering histories whose resultant cIus-firSt generate a sequence of horizontal $izg} randomly. If

ter has the horizontal siZe and massn, the history prob- L,=L, thenL,,, is set equal td.+1 with the probability

* 1- i ili A%
ability p and the number of historids are of the forms p*=an"”andL with the probability -p*, wherea and
v are chosen randomly between 0 and 1. We next calculate

(10

P({Ly,...LpH)=3"M4 "2 (L+2)" M, (5)  the history probabilityp, and the numbeN,, of such histo-
ries and addNyp‘; to the partition function. This procedure is
N({Lq,....L..sH) repeated 10times. In order to satisfy the equali®,(1)

=1, Zy(q) is divided by the sum oN,p,. The numerical
=1M " 1x2x2M Ix 2. (L—1)"-171x 2% LM, (6) results suggest that(y) converges to the lindh=1y as
shown in Fig. 2, which is in agreement with E{7). It
wheren, is the number of particles that stick to the clustershould be noted thag parametrizes all possible clusters and
with horizontal sizek. Here the conditionsn;+n,+--- tells us the ways of growth of the clusters.
+n.=m-1, 1<n4,...,n__4, and 0<n_ hold in Egs.(5) Another nontrivial example is the Eden model. The tran-
and (6). We consider the history satisfying the relatibp, ~ sition probability from an Eden cluster,, to o, 1 is deter-
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1.0 of histories in Eq.(2) by an ensemble averad@é], one can
write the partition function as
08|
Zn(@)=((P{onh) ™), (11)
=~ o6} -
= 4 where a pair of double angular brackets refers to the en-
< k semble average taken over possible histories figmto
04r om- As m increases, the history probability whose scaling
/,,..-"' index is given byy~ y(1) still remains large since it has a
0.2}l small escape rate. Equatidhl) is useful for obtaining the
spectrum neaq=1.
" . ' ‘ The minimum scaling index/(x) is expected to bé be-
0 0.2 04 06 0.8 10 cause of the requirement that, has the smallest perimeter
) ' ' ) ’ size leads to a circular object. If the cluster is compact and
Y has the indexy, thenL, is scaled aR®” with a linear size

R of the cluster. The surface of the cluster is self-similar,

FIG. 2. Entropy spectrum of the ballistic aggregate modelexcepty=3, and has the fractal dimensior.20n the other
whose trajectories of particles are parallel to the vertical axis. Theyand, if the cluster is self-similar like a DLA cluster, most of
solid circles are obtained from the theoretical estimation of the parsjtes of the cluster belong to its perimeter anglis scaled as
tition function and the three lines are obtained numerically. TheLm~ m. Thusyis directly related to the morphology of Eden
dotted line is form=950, the dashed line is fan=9500, and the clusters and distributed betweéland 1. In the case tha(1)
solid line is form=90 000. is equal to some value betwegand 1, the cluster must have

. . . . a complicated surface such as a fractal curve.
mined from its perimeter sizk,, because the cluster grows We have found thaty(1) is about 0.66 form=12 and

"hecked the depend i . In the inset of Fig. 3
empty sites with the probability Lf,. We have calculated ecked the dependence al) onm. In the inset of Fig. 3,

. i 1) calculated from the ensemble average df dlisters is
the entropy spectrum of Eden clusters on a two-dimension lotted versusn— Y4 It is known that the interface widtv
square lattice numerically as shown in Fig. 3. The distribu- !

! ! A . in Eden growth starting from an initially flat surface with a
tion of history probabilities is computed by summing over all linear sizeR is scaled withm and heightl as w(R,I)=

the histories up ton=15. To remove influence of the factor R*f(1/R?), where the exponents=1 andz= icorrespond to

C in Eq. (1), Kq is determined frorr; the ratio of Ea%i)tion the stationary and dynamic scalifitl]. The scaling function
functions Zm+1(A)Zm-1(A)/ Zro() ”[”."(m‘l)] _* f(x) is such thatf(x)~x”? for x<1 andf(x)~ const forx
For higher values ofn, we are faced with computational 1" i g=qa/z. One can also take the alternative form
limitations due to the increasing number of histories. So w

q | ve definition of Reolacing th ‘?N(R,I):Iﬁf(RZ/I), which is useful for Eden clusters start-
adopt an alternative definition &,,(q). Replacing the sum ing from a single seed. Assuming that R~m"2 for Eden

clusters starting from a single seed, the scaling form is re-
1 written by w(m)=m¥%f(m¥4. The asymptotic behavior of
07 physical quantities fom—c can be represented well by
sl e using a function o4, The inset of Fig. 3 shows tha(1)
= converges tg asm goes to infinity, which is consistent with
/ the fact that Eden growth leads to compact and spherical
04 e 36 clusters. The equaliti{, =K., implies thatK, is constant for
m-1t4 / B g=1 becaus&, must decrease monotonical g@sncreases.
05 ! L Our numerical calculations suggest that the generalized en-
B tropy varies continuously fog<1. We therefore expect that
a phase transition occurs at the critical pajrst 1.

We next consider DLA clusters on a two-dimensional
square lattice. DLA growth is intrinsically different from the
above two examples with respect to growth rules. The tran-
sition probability from a DLA clustetr,, to o, 1 iS equal to
0 0.5 1 the growth probability at the interface proportional to the
gradient of Laplacian field, while it is determined from the
perimeter size or linear size in ballistic aggregates. Neverthe-
less, the assumption of E€]) is still effective for Laplacian
growth as already shown in Fig(d. Let R, be a linear size
=10, and the solid line is fom=15. The spectrum for only gf Im a_lnd Dr, be trf:fe fraCt?]l dlmen_S|_on Ofrmt') l'tjfl’.mg fthe
<0.9 s plotted. It is difficult to estimate the spectrum accurately for imension spectru (a)., the trani’glon proba "t}’ rom
g>1 from small clusters because a phase transition occucs at m 10 o0m+1 Can be estimated bR "™, where oy, is the
=1. The inset shows the dependenceydf) onm~ Y4 The dashed singularity of growth probability at the interface of,,.
line is drawn as a guide for the eye. Then the history probability takes the form

Y1)
.

h({Y)

FIG. 3. Effect of masan on the entropy spectrum in Eden
growth. The dash-dotted line is fon=7, the dashed line is fam
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m-1 “invariant” means that it does not depend on the lattice
P{o1,02,....0m})~ H n-n/0n, (12 structure and extrinsic details of growth rules. The entropy
n=1 obtained from history probabilities and the multifractal spec-
trum h(y) are directly related to statistics of growing clus-
rs and the escape raje-h(y) tells us how often the clus-
r will be observed in growth models. The history
probability has the advantage of numerical estimation in
comparison to the probability of finding a cluster among
equal-size clusters. To demonstrate the application of the
method to growth models, we have calculated the entropy
spectrum of the ballistic aggregate growth producing fanlike
clusters as a solvable example. An analytical estimation of
the spectrum and numerical results show the existence of a
phase transition aj=1. We have also applied the method to
Ki=a(1)/D. (13)  Eden clusters starting from a single seed. Numerical calcu-
lations ofh(y) suggest that a phase transition occurs at the
We checked this relation numerically for the same data ircritical pointq=1. The indexy in Eden growth is related to
Fig. 1(b). The fractal dimension calculated from the radius ofthe fractal dimension of the surface and the spectrum shows
gyration is 1.6% 0.02 and the information dimension for the that the cluster with a fractal surface will not be observed for
harmonic measure of two-dimensional DLA clusters is unitylargem. To study the statistics of clusters generated in sto-
[12]. Substituting these values into E(L3), the entropy chastic growth models, it is not sufficient that one considers
K,=0.608 is well approximated by I/ only geometrical quantities such as the fractal dimension.
In summary, we have introduced an invariant that is ob-We believe that the entropy spectrum is useful to study sta-
tained from the history probabilities in growth models. Heretistical physics of growth models.

Considering a history of a growing cluster whose fractal di-
mension is independent of mass, the probability is scaled b?a
m!. The factorial of m again appears and the scaling as- N
sumption of Eq.(1) is now justified.

We point out a relation connecting the entrdgy to the
fractal dimensiorD. The fractal dimension of typical DLA
clusters is independent ah and the statistically averaged
singularity of the growth probability can be given lay1),
wherea(1) is the singularity forg=1 in the dimension spec-
trum. We therefore conjecture the relation
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